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t Air Form Weapons Laboratory, Kirtland Air Force B ~ K ,  Albuquerque, NM 87117, 
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Received 14 August 1990 

Abstract. This paper discusses the possibility or the transfer of electronic 
Aharonw-Bohm phase factors to light in double-quantum-well structures in mag- 
netic fields. The open Ratme of semiconductor quantum web permits a new type 
of coherent light scattering by means of certain interband transitions which preserve 
the positional indeterminacy of electronic states in h n o v - B o h m  superpositions. 
The modes of the coherently scattered light are deterrained by the magnetic flux per 
unit length betwscn the wells. The calculation shows that thc scatterins mechanism 
c m  he quite efficient and may be used as an optical probe of ballistic electrons whose 
wavehctiom do not suffer a reduction while traversing the w e b .  

1. Introduction 

Several years ago the Aharonov-Bohm effect was demonstrated in the conductivity 
of a double-quantum-well structure (Datta et a[ 1985). The open nature of such 
structures offers the possibility of a new type of light scattering from electrons which 
are in Aharonov-Bohm superpositions of Landau orbits centred in different wells. In 
this paper we demonstrate that if the final states of electrons after the scattering are 
still some Aharonov-Bohm superpositions of Landau orbits, then the scattered light is 
coherent and its modes are determined by the magnetic flux per unit length between 
the quantum wells. 

Traditionally, the Aharonov-Bohm effect has been associated with isolated paths 
for electrons. What is meant by the phrase ‘isolated paths’ here is that the wave- 
functions corresponding to different paths do not have any finite overlap. Indeed, in 
their original paper, Aharonov and Bohm (1959) presented a thought experiment in 
which electronic paths were completely isolated, yet they led to quantum interferences 
which illustrated in a striking fashion the special significance of potentials compared 
with forces in the quantum theory. However, such completely isolated paths are not 
necessary for the Aharonov-Bohm effect. There will be Aharonov-Bohm interferences 
as long as there are two alternative paths for an electron which is in a superposition of 
the states corresponding to these paths, and if these states accumulate different phases 
along their respective paths. There is, in principle, no restriction on the widths of the 
wavefunctions which appear in a superposition state, and there may or may not be a 
finite overlap between the two wavefunctions Corresponding to the alternative paths. 
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A semieonductor microstructure like the one used by Datta et a1 provides an example 
in which electronic paths are not isolated. In these structures a Landau state wave- 
function centred in one well will have a tail in the neighbouring well for sufiiciently 
narrow wells and for appropriate energies. Such a leakage of wavefunctions permits, 
under the right conditions, optical transitions of electrons from one well to another, 
thereby leading to the transfer of Aharonov-Bohm phases from electrons to optical 
fields. 

A Elsa and D Depatie 

Figure 1. The double-quantum-well geometry Ior the Aharonw-Bohm effect. The 
slab r e p s e n t  the quantum wells. The crystal in which these w e b  are embedded 
and the contacts through which electrons are injected and extracted an not shown. 

If one chooses the Landau gauge for the geometry of figure 1 

A, = +B,r B = V x A = Bolt (1.1) 

where Bo is the magnetic field, an arbitrary Landau state may be designated as 
Ibnk,k,), where b labels the band, n = 0,1,2.. . is the Landau index for the oscillator 
states, and (k2, k v )  = k is the electronic wavevector. To designate the quantum-well- 
centred Landau states, one can reduce the electronic wavevector as follows (Elti and 
Depatie 1990): 

k =  K+GwK,,, (1%) 

where w = rtl and 

(1.26) 

L is the width of a well, and 2z, + L is the separation between the centres of the wells. 
If lKy! < (L/2[5) ,  the quantum-well-centred states are associated with w and may 
be designated as IbnmK). w = +I represents a Landau state which is centred in the 
well located at z = +, + L / 2  (see figure 2). w = -1 represents a Landau state which 
is centred in the well located at x = - (zo t L/2) .  We should emphasize that it is 
the centre of a cyclotron orbit which is confined to a well, not the entire orbit. Thus 
the presence of the quantum wells introduces an effective quantum number w = f l .  
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Figure 2. 
coherent light scattering. 

Interband transitions of the quantum-well-centred Landau states for 

The Aharonov-Bohm superposition states correspond to superpositions of degenerate 
Landau states which have different UI. 

If the longitudinal (11 2) voltage drop across the structure in figure 1 is zero or 
negligible, then a ballistic net current along the y-axis is obtained only if electrons 
are injected into the wells in Aharonov-Bohm superposition states (Elci and Depatie 
1990). Let us consider two conduction band Landau states lcn+) and Id-) which 
are degenerate in energy. For simplicity we suppressed the electronic wavevectors. An 
example for an Aharonov-Bohm superposition state is 

1 
= - (eielcn’-) + Icn+)) . Jz 

Thus the position of the electron is indeterminate with respect to the wells. If an 
electron in the state I$AB)  is coupled to an incident coherent light beam, both com- 
ponents of the superposition state undergo transitions unless the electron suffers a 
wavefunction reduction. If such a reduction does not occur so that optical transitions 
preserve the positional indeterminacy, that is, if the final electronic state is still an 
Aharonov-Bohm superposition state, then the incident light is coherently scattered 
into certain modes which are determined by I<,,,. By coherent scattering we mean 
that if the incident field is a plane wave of a certain polarization, then the scattered 
field is also a plane wave of a definite polarisation. In section 2 we show that for an 
incident beam propagating along the i direction, the coherently generated modes have 
the transverse wavevector components 

q*A = f2K& (1.4) 

These components essentially determine the propagation directions of the scattered 
waves. 

If the components of I@@) undergo the following virtual interband transitions, 
the positional indeterminacy is preserved and the final state is an Aharonov-Bohm 
superposition state. Consider the sets of transitions illustrated in figure 2, where 
Iun”+) and Id‘‘-) are two degenerate Landau states in a valence hand. In the set 
of transitions labelled I, the first component of ]IDAB), namely led-) is changed into 
Id’+) hy a virtual transition in which a photon of wavevector q, is emitted; then 
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a second virtual transition changes Id'+) into Icn+) by absorption of an incident 
photon qi. Thus, these two virtual transitions create a counterclockwise circulation 
around the magnetic field and in the following section we show that the scattered 
photon has q,L = -2K,*. In the set of transitions labelled 11, the second component 
[en+) of I$AB) is changed into lun"'-) by the emission of a photon; then Iwn'"-) is 
changed into led-) by the absorption of an incident photon. This second set of vir- 
tual transitions creates a clockwise circulation around the magnetic field lines and the 
outgoing photon has qtL = 2K,c. When an electron undergoes the four virtual tran- 
sitions shown in figure 2 through its component states in (1.3), the final state is again 
an Aharonov-Bohm superposition state which can be written as exp(i8')l$AB(8'')). 
Note that the non-isolation of the quantum wells is essential for inducing the overall 
transition 111AB(8)) -+ ele'l$AB(B't)). If the wells are completely isolated, transitions 
like l e d - )  - Ivn"+) cannot take place. Note also that although the electron un- 
dergoes four interhand transitions, the overall scattering process is second-order, not 
fourth-order. The whole process described above may be visualized as the coherent 
superposition of two distinct Compton scatterings. 

One can understand the imparting of the transverse momenta of (1.4) to scattered 
photons qualitatively from the following classical picture. The onset of the charge 
circulations around the magnetic field lines associated with the virtual transitions 
develops EMF forces, mostly along the y-axis. When an electric field along the y-axis 
acts upon a Landau state in the geometry of figure 1, it induces a net probability 
current along the z-axis (Elqi and Depatie 1990). Thus, incident photons cause the 
electronic charge in the superposition state to act effectively as an oscillating dipole 
which is nearly parallel to the z-axis and which emits photons propagating along the p 
axis. Note that if an electron is described by adensity matrix pAB, then equation (1.3) 
implies that pAB has off-diagonal matrix elements with respect to the well index w. 
This is analogous to the dipole moment of an atom which can couple to a radiation 
field (Sargent e l  aZl974). The off-diagonal elements of pAB may also be intetpreted as 
a dipole moment. It should he noted, however, that the states involved in the atomic 
polarization generally have different energies. In contrast, in dB the states have the 
same energy. 

If the Aharonov-Bohm superposition state suffers a reduction, or the electron is 
in a state which is centred in one well to begin with, then the calculation of the fol- 
lowing section reduces to the ordinary light scattering, in that one part of the incident 
coherent beam is reflected back and the remaining part propagates forward. On the 
other hand, if the electron is in an Aharonov-Bohm superposition state initially, it can 
undergo the transitions I and I1 together without suffering any reduction, as described 
in the preceding paragraph. After the four transitionsshown in figure 2, one has essen- 
tially ---* exp(if7')($AB(f7't)) and the electron remains in an Aharonov-Bohm 
superposition state. Its position with respect to the wells is still indeterminate in the 
final state. 

This positional indeterminacy of the final electronic states forces the states of the 
scattered field to be coherent. The overall transition I$A"(8)) -+ exp(if7')ItjAB(0")) 
cannot take place if the states of the scattered field are number states. This can be 
seen from the following thought experiment (EIGi 1989). Let us imagine that two light 
detectors are placed on the left and the right of the microstructure, on the y-axis. Let 
us  also imagine that the ballistic current is sufficiently reduced so that at any moment 
there is at most one ballistic electron in  the structure. One can therefore, in principle, 
associate the scattered photons detected within a time interval with a given ballistic 

A ElGi and D Depatie 
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electron. If the scattered light is in a definite number state, one can deduce the position 
of the electron. For example, if just one photon is detected by the left detector, while 
the right detector indicates zero photons, then the electron must have been initially 
in the well labelled by w = -1, and it must have gone to the well labelled by w = +1, 
since the transverse momentum imparted to the photon is -2K,G and the electron 
must have undergone the set of transitions I without undergoing the transitions 11. 
In other words, the original Aharonov-Bohm superposition wavefunction must have 
collapsed into asingle quantumwell-centred Landau wavefunction. Similarly, a photon 
at the right detector implies that the final position of the electron is in the well w = -1. 
It follows that the state e~p(iO’)l$*~(O’’)) cannot be associated with definite number 
states for the scattered light. Rather, the observed numbers of the scattered photons to 
the left and the right must be indefinite, but the phases associated with the scattering 
modes must be definite, in order to prevent destructive interferences between the two 
plane waves originating from the same electron, one going to the left, the other to 
the right. Thus the light scattering from electrons which remain in Aharonov-Bohm 
superposition states must be coherent. The calculation presented in the following 
section and in t.he appendices confirms this qualitative picture. 

In the transitions of figure 2, the intermediate valence band states Ivn’’+) and 
Iun”’-) are centred in the quantum wells. There are also valence band Landau states 
which are not centred in any of the wells and one might wonder whether they would 
contribute to the coherent scattering. In fact, they do not. The theory indicates that 
as long as Icn+) and I d - )  are quantum well centred states, the intermediate states 
must also be centred in the quantum wells in order to scatter the incident photons 
coherently. We should also add that the intermediate Landau states need not be in the 
valence band, but could be in a conduction band c’ which is higher than e. The order 
of absorptions and emissions are interchanged in this case, but the essential physical 
picture remains unchanged. 

Note also that with the completion of the four virtual transitions the original 
superposition state is nearly recovered except for a relative phase change. Since the 
relative phase can be related to the current densities at the boundaries, the effect of 
the above radiative transitions is essentially to induce in the environment an adiabatic 
transformation of the kind in Berry’s theory (Berry 1984). 

In section 2, we describe the Hamiltonian and its representation in terms of the 
Landau states in the presence of the quantum well potential and a pair of applied 
DC electric fields. This Hamiltonian is used to calculate the density matrix operator 
to second order in the optical field amplitudes, assuming that the coupling between 
the incident field and the crystal structure is turned on a t  1 = 0. The second-order 
density matrix for large 1 is used to determine the expectation value of the coherently 
generated scattering modes from electrons which are in Aharonov-Bohm superposi- 
tion states. The details of the calculation are summarized in appendices A and B. 
We also discuss the mode equations and the efficiency of the scattering mechanism 
for the geometry of figure 1, where the incident field propagates parallel to the z-axis 
and the Hall field along the z-axis is negligible. The magnetic flux induced coherent 
scattering is enhanced under certain resonance conditions which relate the incident 
field frequency to the magnetic field, the spatial separation of the wells, and to the 
energy separation between the bands involved in the virtual transitions. The theory 
indicates that the proposed scattering mechanism can be quite efficient and can be ob- 
served experimentally in structures similar to  the one in the original Aharonov-Bohm 
experiment (Datta et Q I  1985). The analysis of section 2 is carried out for a symmetric 
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double-quantum-well structure, which simplifies the calculation and its results. The 
proposed coherent light scattering is, however, independent of such symmetry. By 
means of a simple substitution, the formulas are rekdily modified for the case in which 
the widths of the two wells differ. This is discussed in section 3. 

In addition to its novelty, the proposed magnetic-flux-induced coherent light scat- 
tering might have useful applications in steering of laser beams magnetically, or to 
semiconductor lasers for selecting the lasing modes. We believe, however, that its 
most interesting application would he as an optical probe of the reduction or non- 
reduction of the electronic superposition states. The amplitudes of the coherently 
generated scattering modes measure directly the number of ballistic electrons whose 
positions are indeterminate and whose wavefunctions have not suffered any reduction 
as a result of the light scattering. The efficiency of the scattering process suggests 
that such an optical probe would he more sensitive than a conductivity experiment. 

A EIGi and D Depalie 

2. Coherent light scattering 

In this section we describe the Hamiltonian used in the second-order scattering cal- 
culation and give the results for the coherently scattered field. The details of the 
calculation are summarized in appendices A and B. 

Since our discussion is concerned with ballistic electrons, we may write the one- 
electron Hamiltonian in terms of the projection operators for the electronic states: 

H = Ho + HI (2.la) 

(2.lb) 

(2 .k )  

(2.ld) 

In (2.lb), the la) represent the Landau states in the quantum-well structure. We 
assume that they are calculated in the effective m a s  approximation near the centre 
of the Brillouin zone (BZ). We also assume that the bands of interest are isotropic, 
which permits us to use the results of Elgi and Depatie (1990). Let Cy and &z be 
the DC electric fields in the structure. A Landau state wavefunction modified by the 
potential of the wells, as well as by &y and &*, has the form (Elqi and Depatie 1990) 

where @o(z) is the Bloch function of the band b a t  the centre of the BZ. L, and L, are 
the sample dimensions in the It  and $ directions. q5bnwK,(~) is approximately given 
by 
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where 

(2.5a) 

(2.5b) 

Here m; is the effective mass of the band b. U, represents the sign of the curvature of 
the band at the centre of the BZ: 

U, =sign ((dzEb/dk2)k=o). (2.6) 

Here U,(.) is the harmonic oscillator wavefunction: 

Here H, is the Hermite polynomial. @An, in (2.4) arises from the quantum well 
potential. For sufficiently shallow wells and for the Landau states centred in these 
wells, PAn, is given approximately by (EICi and Depatie 1.090) 

Pnn, b - - (1 - Snn,)6W~,,[hw,(n - n')]-' (2.8a) 
-L/2 

6wkJ = .bWbO[ ~ ~ d Z u n ( z ) U n ~ ( E )  + 1, diun(z)un,(z)] 

+ U*(- 1)"+"'+'w,,~u,(21;K,)U,,(21~K,) (2.86) 

where W,, is the height of the potential well for the band b. +bntuK, represents a 
quantumwell-centred Landau state if 1K,1 < (L/21;).  If IKyl > (L/W;),  the Landau 
state is centred outside the wells. In this case we assume that the reduction of k, 
defined in (1.2~2) is carried out by choosing the sign of w such that the resulting IKyl 
is minimum. Then the label w in +bnwK, represents the nearest well to the centre of 
the Landau orbit. 

Returning to equations (%I), b and 62 ate the annihilation and creation operators 
for the photon mode $. 2, and q, are the polarization and the propagation vectors 
of this mode. V,, is the quantization volume. To simplify the problem, we assigned 
a single index of refraction & for the entire structure. H, represents the p -  A 
coupling. In the representation of & n w ~ ,  the coupling coefficient g is given by [see 
appendix A] 

Y 
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We will be concerned with those magnetic fields and quantum well structures such 
that (q,,*)-l > I,,L, z, for optical or longer wavelengths. One may therefore set q#z 
to zero in (2.96). Furthermore, if one takes just the leading terms u,(zkW) in the 
expression for +,,WK. in (2.4), one finds that 

A El$: and D Depatie 

where 

and 

(-l)n-XqAxntn'-2A 

(n - A)!(n' - A)!X! ' 
(2.lOc) 

In (2.10c), the factorial of a negative integer in the denominator makes the summand 
zero. For order of magnitude estimates, the approximation (2.10a) is quite sufficient. 

Finally, the wavefunction $knwK is associated with the eigenenergy 

(2.11) 

Here E,, is a constant which represents the separation of the band edge of 6 from the 
reference zero energy. 6W6, is the correction induced by the quantum well potential 
in the Landau state energy. It may depend on (Ky + wK,). Under the approximation 
when equations (2.8) hold, 6W,, for the quantum-well-centred states is given by (El+ 
and Depatie 1990) 

6W,, c SW,,. 6 (2.12) 

When the Landau state is not centred in the wells, 6Wb, w W,,. 
Firstly, the 

electron-photon coupling represented by H, is a simplification. The full coupling 
Hamiltonian is given by 

Two remarks are in order before we consider the scattered field. 

A2 
1 e e' 
m Hi = - ( p  + ;A,) - A +  (2.13) 

where A and A, are the vector potentials for the radiation and magnetic fields, re- 
spectively. Since our discussion is concerned with radiative interband transitions, we 
omitted in (2.1) the couplings which are of the form A* and A,, . A .  Secondly, +knwK,  
in (2.4) and E,,,(K) in (2.11) were derived by Elgi and Depatie (1990) under the 
assumptions that K ~ I ,  < 1, I@k,,I < 1, and zo + L / 2  > I,. The last assumption was 
made to simplify certain integrals. In the experiment that we propose in the present 
paper, we actually consider cases in which zo + L / 2  < I B .  This has some effect on the 
actual numerical values of @:", and 6W,,. We expect, however, these values to be not 
too different from (2.8) and (2.12) for the purpose of order-of-magnitude estimates. 
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The Hamiltonian given in (2.1) may be used to calculate the density matrix oper- 
ator of the electrons plus the field to second order in the incident field amplitude as 
time becomes indefinitely large. This density matrix may then be used to calculate 
the expectation value of the vector potential field, in particular the Contribution of the 
electrons which remain in Aharonov-Bohm'superposition states to this expectation 
value. We assume that a cohereni field mode is incident on the structure at t = 0 and 
that the overall density matrix is separable at t = 0: 

do) = Pe(o) 8 PF(0) (2.14) 

where pe(0) is the electronic part and pF(0) is the field part. Let 

@,,) = !h (b,pF(o)) = 4,,i exp(i&)& (2.15) 

where t$i is the phase of the incident coherent mode and ?id is the average number of 
quanta in it. Also let 

Tr(lo)(~'lPe(o)) = Pe,,". (2.16) 

As stated in the introduction, p:,,, has off-diagonal matrix elements between de- 
generate quantum-well-centred states with w = -w' for the electrons which are in 
Aharonov-Bohm superposition states. We consider only the contribution of these 
off-diagonal matrix elements in the scattering: 

AB 
P L  - ' P b n w ; b n ' - s ( K > K ' )  IIcyI,IK;I < (L/%) E b n w ( K )  = E b n t - w ( K ' ) .  

(2.17) 

This scattering calculation is summarized in appendix B. One finds that the coher- 
ently generated scattering modes arising from pAB are the solutions of any one of the 
following four sets of the equations: 

- (2wKm$ + K - K' - qir)' 

I lI2 
i . qr, = -f [ %$ - (2wKm$ + K - K' + qJ2 

( 2 . 1 8 ~ )  

(2.186) 

( 2 . 1 8 ~ )  

(2.18d) 
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where sir. . . , sq denote the modes. Any solutions of these equations are coherently 
excited by the ballistic electrons which are in Aharonov-Bohm superposition states. 
The second-order, coherently generated field is given by 

A EIS: and D Depatde 

where N = N / ( C z C y )  is the density of the ballistic electrons per unit area. It should 
be kept in mind that in (2.19), the sums over sl,. . . , s4 are not independent sums but 
depend on the indices w, w", b", etc. We indicated this by putting parenthesis around 
si under the summation signs. 

When the incident light propagates in the f direction, qir = 0 and the solutions 
s1 and sa are indistinguishable. The same is true for s, and s4. The modes pairwise 
merge together. Let s l , s z  -+ s and s3,s4 -+ s'. The mode equations (2.18) may be 
simplified further by assuming that K ,  = ISs, = 0 and IK, - Q 2Km. The first 
assumption means that the particle current is along the y-axis. The second means 
that the Landau states are centred near the midpoints of the wells. One then has 

qll = 2wK,jr 2, - qs = 0 
hw, = Ebn,-w(If) - Ep,nuwu(Kf - (W + w")K,G) (2.20a) 
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and 

The corresponding expression for the scattered field can also be simplied. In 
(2.19),  the first and third group of terms have resonance denominators. If the incident 
light frequency is adjusted to  be near either w8 or wd,, these terms will be much larger 
than the second and fourth group of terms. We may therefore keep only thme terms 
with resonance denominators and obtain 

x M&nrrwu;anr-w(Ky + ( w -  w")K,, K ; l i . q , , )  

x Mbunumu;bns(Ky + (W - w")K,, I<,,li.qi:) . (2.21) I >  
Note that two types of polarizations may be associated with (2.20).  One has the 

polarization vector in the transverse plane, parallel to the magnetic field: 

(2.22a) 

The other has polarization vectors in the yz plane, perpendicular to the magnetic 
field: 

" -  
E = 2. 

tr = -[sign(i-q,,)]GuxB,, + [sign(G.q,)]%sinB, (2.226) 

where 

(2.22c) 

We now discuss the implications of (2.21) for the geometry of figure 1. To simplify 
the following discussion, we assume that the longitudinal DC field is negligible. Of 
course, many of the electrons injected into the structure do not have ballistic motions 
but scatter and collect near the well edges, which may set up a Hall field contributing 
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to E,. For the following discussion we assume that if necessary, an external DC electric 
field along the z-axis is imposed on the system to compensate for the internal Hall 
field. I t  should be noted that the application of a DC voltage acro~s the boundaries 
of the sample need not cancel the internal Hall field entirely, since the internal field 
may have a spatial structure inside the sample under steady state conditions. For 
the following discussion, we assume that this internal field variations produce only 
small, negligible perturbations in Landau state energies, w that contributions of C, 
in (2.4) and (2.11) are negligible. This assumption has no effect on the coherent 
scattering mechanism hut simplifies the algebra. We will also concern ourselves with 
the electronic states which produce particle currents only along the y-axis and are 
centred near the midpoints of the wells. We set IKl = IK'I ai 0 and suppress K and 
K' in the matrix elements in (2.21), as well as in the mode equations. We also assume 
that 6Wb, is given by (2.12). Under these assumptions (2.17) requires that n = n' in 

A Elqi and D Depatie 

AB 
Pbnw;bn,-w, We define 

(2.23) 

Let 6 and 6" be the conduction and valence bands, respectively, as in  figure 2. In 
this case only the s-modes of equation (2.20a) are generated coherently and we need 
to take into account only the first group of terms in (2.21). Let us = +1 and U, = -1. 
From (2.20a), the frequency of the coherently generated modes is given by 

hw, = E, + hw,,(n t f )  + hw,,(n"+ i) + 6W,, + SW,,,,, (2.24) 

where E, is the band gap between the conduction and valence bands. If we let w = -1, 
we pick out the transitions indicated as I in figure 2. From (2.20a), the corresponding 
modes have q,L = -2K,$ If w = +1, then we pick out the transitions indicated as 
I1 in figure 2 and the corresponding modes have qS1 = 2K,,,@. Let us define 

A,, = [fi'w: - ~ ~ ' C ~ I \ $ C ~ ~ ] ' ~ ~ .  (2.25) 

Since the amplitudes of the coherently generated modes are proportional to 

li.q,I -1  = &.c-'/2A-1 c o n  (2.26) 

the scattering is resonantly enhanced if the magnitude of the magnetic field is adjusted 
so that An is extremely small. If the Landau levels are sufficiently well separated, this 
enhancement will pick out a definite value of n. 

Note that the above adjustment can readily be made because the wavevector IC, 
can be large for relatively weak magnetic fields, yielding an energy which is comparable 
to typical band gaps. For example, if Bo = 10 kG, cm = 16, and zo = L = 60 A,  then 

(2.27) 

Equation (2.25) suggests that An can go to zero, causing an enhancement of infinite 
magnitude. In fact this will not happen, since electronic states have finite lifetimes 
and 6 in equation (2.21) should be replaced by an appropriate energy width 7. This 
will replace An by 

2 h c K , ~ ~ ~ ~ '  = eB0(2z0 + L ) C ; ' / ~  n. 1.5 eV. 

(2.28) & = [ A : + r ]  2 112 . 
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Finite times for electronic states d w s  not contradict the ballistic motion hypothesis 
per se, since the latter requires simply that Lv 5 I,, where 1, is the mean free path 
for electrons. It should also be noted that there are actually two distinct decay times. 
One is concerned with the off-diagonal density matrix elements like PAB. The other 
is concerned with the diagonal density matrix elements. y should be related to the 
latter. 

Going back to the mode equations (2.20a), we have four propagation vectors: 

q, = *Q2K,,, zk ic~2(hc)-'A,. (2.20) 

As A, -+ y, the t-component of qs is nearly zero and the two modes begin to merge. 
Polarization vectors may be obtained from (2.22). Let us consider only the mode with 
the plus z-component and the minus y-component (designating it by s = -+) and let 
its polarization vector be 

2hcKm 
i-, = -(Qcoso,,+isino,) e,, = tan-' (-) . (2.30) 

&A" 

Again as 6, -+ y, i-, is nearly -i. Consider the matrix elements M in (2.21). For 
w" = + I ,  we have 

M:n-;"nll+(O, OIx^. P s ) ~ , , + ; , , J ~ +  (0,01%) = M:n-;"n*~+(O, OlO)Mc,,;,,ll,(O, 010) 

= e~p( - l z  K;)Dnnu ( - 2 1 ~  K,,,)Dnntt(0) 
= a,,,, exp)(-dK~)o, , (2rBK).  (2.31) 

The last two lines follow from (2.10). Thus within the validity of the approximations 
here, one must set n = n" in (2.24). For w" = -1, we have, using the symmetry 
properties of &WK. given in appendix A (equations (A7o) and (A76)) 

W"-;"dL (0, -2% l i  96)%+;","- (0, -2KlIni) 
= M~-;,,,,,(O,Oli* 4,)M,,+;,,~,+(O,OI~i). (2.32) 

Therefore w" = f l  produce identical terms in (2.21). Using (2.31) and (2.32) in 
(2.21), one finds that for the s = -+ mode 

xexp[ i (q- t .2-w_tt+oi )~} .  (2.33) 

For the purpose of comparison, it is convenient to take the absolute value of the ratio of 
the complex amplitude of the scattered wave to the complex amplitude of the incident 
wave. Defining this ratio as r-+, one finds 

(2.34) 
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r l ,  compares the densities of the quanta in the two waves and therefore yields the 
efficiency of the scattering mechanism into this s-mode. 

In order to have a finite r-+, the orientation of the structure must be such that 
the products Z-,. l'&ti. P," do not vanish. In the geometry of figure 1, if we assume 
that pcv is in the [lll] direction, 

A EIci and D Depalie 

(2.35) 

Typically lPcvl corresponds to a large wavevector for the n1-V semiconductor com- 
pounds: IP,,l/h As before let us assume that zo = L = 60 A, 
Bo = 10 kG, and E ,  = 16. Fot mf = m: = 0.1 m, there is a single cyclotron 
frequency: hw, z eV for the above field strength. Assume that the energy width 
y is comparable to  the one tenth of the cyclotron energy: y - eV. The peak 
values of r-+ are obtained when the resonance conditions 

2 2 
It-+*PZ,ii*P,,J = $lPC"] . 

loa em-'. 

hi N E, + hw,(Zn + I )  + 6W,, + 6W,, N ~ B , C ; ~ ~ ~ ( Z ~ ,  + L) (2.36) 

are met. Let the injected electrons be in the n = 0 level for the sake of simplicity. 
This yields Do0 = 1. Since the double-quantum-well structure is symmetric, it is 
reasonable to set IpfEic0+l = 1/& For ordinary electrons, typical injection densities 
into quantum wells can be on the order of 10" Let us assume that ballistic 
electrons which are in Aharonov-Bohm superposition states form an extremely small 
fraction of such densities, say N .-, 5 x lo8 c n r 2 ,  Under the resonance conditions 
(2.36), one then finds that r-+ U 0:l. This is a substantial value for r-,. and indicates 
that the proposed coherent scattering mechanism can be extremely efficient. 

The intermediate band 6" in (2.21) may be a higher conduction band instead of a 
valence band. The coherent scattering is then into the a'-modes in (2.20b) and (2.21). 
In this case the order of absorptions and emissions are interchanged compared with the 
previous case. For example, the state Icn-) transits into IC'.''-) by the absorption 
of an wi-photon, where c' designates the higher conduction band. IC"''-) transits 
into la+) by the emission of an U,,-photon. /ma+) undergoes a similar sequence of 
transitions. If we let uc, = uc = +1, the frequency of the coherently scattered modes 
is given by 

hw,, = Ecto -E,, + h(w,,, - wJn + i) + 6Wc,, - 6W,, (2.37) 

where E,,,, E,, designate the baud edges. When wb is replaced by we, in equa- 
tions (2.25) and ( 2 2 9 ) ,  these equations also hold for the s'-modes. Furthermore, the 
additional replacement of PCv by PC+ in (2.34) yields r, , .  The resonance conditions 
for the s'-modes become 

hw; E,,, - E,, + h(w,,, - wCc)(n + 4) + SW,,, - 6W,, N e B , < ~ " 2 ( 2 t 0  + L). 
(2.38) 

The factor PAB in the preceding field equations of the scattering modes indicates 
that the proposed scattering mechanism can be realized only through electrons which 
are in Aharonov-Bohm superposition states. If one were to consider thermal electrons 
or electrons whose orbits are centred just in one well with a density matrix operator 
of the form p~nw;6,n,wr one would find that radiative transitions are associated with 
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electronic transitions within a given well. There would be no effective charge circula- 
tion around the magnetic field lines. The scattering described by (2.21) would reduce 
to the usual light scattering involving interfaces. Namely, one part of the incident 
light field would propagate forward in the original mode, while another part would 
be reflected back. Therefore one can use the new coherent scattering mechanism as a 
test of the existence and number of ballistic electrons which are in Aharonov-Bohm 
superposition states. Such optical measurements would be more discriminating than 
those involving conductivity. 

In the discussion above, we ignored the effects of the DC field Ev. For sufficiently 
large EY (but still within the approximation that Eq. (2.4) holds), the matrix element 
M defined in (2.96) has terms which are linearly dependent on Cy. These are the 
correction terms to (2.10~) and can be written as 

M ~ ~ ~ ; b , n , ~ , ( K ~ , r ~ ~ l ~ )  = i l d z  exp(iqr) 

x [UbKb(l - wr;1em - - Ua,Ke , (z  - w'l;Icm - l;K;)] 

x U n ( ~  - d ; ~ ,  - !;rcy)un,(z -w'I;K, - i;rc;). (2.39) 

As K Kk, q1 + 0, M(')  can produce transitions which obey the selection rule 
n = n & 1 in addition to those obeying the main one, n = d. This comes about from 
the fact that the integrand in (2.39) is proportional to zununr. 

We should note that a similar violation of the rule n = n' can arise from the &- 
corrections to the Landau wavefunction for sufficiently large quantum well potentials. 
Both the selection rules and the resonance conditions are modified if the field Ez is 
also allowed to be large. 

Y' 

3. Concluding remarks 

In the preceding section we discussed the light scattering for a structure in which the 
wells are of identical width. This symmetry simplifies the algebra and the results. 
However, the proposed light scattering does not depend on this symmetry and the 
formulas may easily be adapted to the case when the structure is not symmetric by 
modifying the reduction of the electronic wavevector defined in (1.2~). When the 
widths of the wells differ, one can define 

E = K + a i K # y  (3 .1~)  

(3.16) 

where L* are the widths of the wells on the right and on the left of the origin, 
respectively. Thus w = fl may still be treated as a quantum number for the states 
whose orbital centres lie in the wells. Substitution of wK, by Kk") in (2.18a)-(2.18d), 
(2.19), (2.20~) and (2.206), and (2.21) yields the formulas for a non-symmetric double- 
well structure. 

The typical parametric values cited following (2.35) indicate that the new coher- 
ent light scattering should be relatively easily observed experimentally in a double- 
qnantumwell structure similar to the one used by Datta el a1 (1985), but with nar- 
rower wells and a closer distance between them. One can construct a series of such 
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microstructures (identical in length and width) in order to  increase the utilization of 
the incident light. The coherently generated modes can come out in directions which 
are nearly in the plane of the quantum wells; thus, they are easily distinguishable 
from the incident field as well as from other scattering modes which may be present. 
By varying the magnetic field strength, one can resonantly enhance certain mode fre- 
quencies, as well as alter propagation directions. With suitably chosen high mobility 
materials, one may improve on the values for N and y given above. The new c e  
herent scattering mechanism can be quite efficient. We should note, however, that 
our calculation in section 2 and in appendix B is a perturbative one, predicated on 
the assumption that scattering amplitudes will be small compared with incident field 
amplitudes. We expect this calculation to be invalid as re increases to values which 
are near 1. In that regime one should perform a non-perturbative, self-consistent 
calculation. 

The analysis of this paper is based on single particle excitations. A more tigor- 
o w  analysis would need to treat the problem in a many-body framework, specifically 
taking into account electron-electron scatterings, which might have an effect on pA*. 
However, the flB that appears in the coherent light scattering calculations above also 
appears in the part of the conductivity which displays the Aharonov-Bohm interfer- 
ences. Since we have the empirical evidence from the experiment of Datta el al that 
these interferences take place, electron-electron scatterings are not capable of reducing 
PAB to zero. Any sample that exhibits the Aharonov-Bohm effect in its conductivity 
will also exhibit the proposed magnetic-flux-induced coherent light scattering. 
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Appendix A 

To evaluate the coupling coefficient g from $tbnw we note that the functions mul- 
tiplying $fi are slowly varying compared with &.' This fact may be used to obtain 
a simple expression for g. Consider the matrix element (a1 exp(iq * z)pla'), where 
a = (bnwK) ,  a' = (b'n'w'K'), and 6 # b': 

dz 
exp(iq.z)exp[-i(K+ w K , @ ) . z ]  

Let us set z = C + R, where E varies within a unit cell of volume R and R designates 
the unit cell position. The integral over the crystal may then be converted into an 
integral over a reference cell and a sum over the unit cells: 
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and $J& are periodic in R. Since the functions multiplying the Bloch functions 
are slowly varying, we let them to be functions ofjust R. Equation ( A l )  becomes 

1 
(alexp(iq. z ) p l d )  U - Cexp[ - i (K  - K’ - q, f w K , ~  - d K m $  *RI 

cc,LV R 

[exP(iqzRz K; ( R z ) ]  

The integral over the unit cell gives the interband matrix element of the momentum 
operator: 

We substitute (A4) into (A3) and convert the sum hack to an integral: 

The matrix element becomes 

(el w ( i q -  z)pIa‘) 6K+luK,$;K‘+w’K,e++.L Pb”bnw;b#n,w’(’‘y 9 le) (-46) 

where Mbnw;b,n,w, is given by (2.9b).  When (A6) is multiplied with the appropriate 
coefficients coming from the vector field, one obtains (2 .9~~) .  

In the evaluation of the transition matrix elements in Eq. (2.32), we exploited the 
symmetry of the structure in Figs. 1 and 2. If the weus are identical, dbnWKw has the 
symmetry 

Appendix B 

Let H,(t) represent H, in the interaction representation: 

H,(t) = exp(iH,,t/h)X, exp(-iXot) 
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The transverse vector potential field operator in the interaction representation is given 

A EI$i and D Depatie 

by 

A I ( z , t )  = E:,, [A,,(z)exp(-iw,t)b, + A;(z)exp(iw,t)bL] (B2a) 
P 

where 

In the interaction representation,the density matrix operator for one electron plus 
the radiation fields is given, to second order in H , ( t ) ,  by 

f I ( 4  E 4') + [R(t),p(O)l+ ilR(t),[R(%p(O)Il (B3) 

where 
, t  

R(t )  =-I! dt'H,( t ' )  
f r o  

and 

C(z;t)  = [exp(izt) - l]/z. 0346) 

From (B3) one finds that, for N electrons, the expectation value of the transverse 
vector potential field operator in the second order is given by 

(A(z , t ) ) (*)  = $" ( [ [A,(z , t ) ,  R(t)l, R(t)lp(O)). (B5) 

From (2.14)-(2.16) and (B3), one finds after some algebra that 

(A(z,t))(')  = N <,Re A,(z)exp(-iw,t)p:p Rg&,(bJ - Rz;R;;(b?) 
PU"S.1 { [ 

- R,;q,@") + R:;R;;(bt)]}. (B6) 

As t becomes indefinitely large, the function C can be written in the form: 

-6 
E,, - E,,, - Iw, + i6 
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Thus 
P -hg,,, 

E ,  -E,, - hw, + i6 RZ,, - lim 

The coherently scattered modes come from the delta function: 

(A(=, t)),h (a) - - N Z , R ~  {intrA,(z)exp(-iw,t)pe,8 
PUP7 

x [gZ;6(Ea - E, - hw,)(R;',@i)' - R$-,@;)) 

+ g!$5(E7 - Ep - hw,,)(R;,(Q - R~-,(b;)*)I}. (B9) 

Here we used the fact that the incident light is a single coherent mode. When (B9) is 
specialized to electrons in Aharonov-Bohm superpositions by using (2.17), one obtains 

Although the states IbnwK) and Ih' - wK') are centred in the wells, we do not 
impose U priori such a condition on the intermediate states in (B10). K" may take 
on arbitrary values in the sum in (B10). However, when (SlO) is evaluated, the 
cohereut generation of scattered fields forces the intermediate states to be centred in 
the wells. 
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Let us designate the terms of (B10) in the square brackets, together with the sums 
over b"n"w"K", as 

[exp(i4i)Tl + exp(-i4;)T2 - exp(i4i)TS - exp(-i4;)T4]. 

From ( 2 . 9 ~ )  and (2.17) one finds 

x M ~ t n ~ ~ w ~ ~ ~ ~ n ~ - w ( K y  + ( W  -w")K, -~i,,KiIq,~) 

x M~ns;*"""w"(I<Y,KY +(ut- W")% - qiyIPi*) 

x 6 [ E * , , n , , W , , ( K + ( ~ - ~ " ) K m B - q ~ ~ ) - E b , , ( K ) - h ~ , ] .  (Blld) 

Next we perform the integration over the radiation modes in (B10). For the TI- 
term this integration has the form 

The same form is obtained for T., T, and T4 terms. There are three delta functions 
in the integrand of (B12). Because of these delta functions, the integral is trivial and 
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reduces to a sum over the modes which satisfy the delta functions. For the TI integral, 
these modes represent the coherently generated modes and are the solutions of (2.18a). 
For T2,T3, and T4 integrations, the coherently generated modes are the solutions of 
(2.18b), (2.18c), and (2.18d), respectively. Using (Bl1a)-(Blld) and (2.18a)-(2.18d) 
in (BIO), one obtains the expression in (2.19). 
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